B.A/B.Sc 5th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH5DSE11 (Linear Programming)

Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any six questions:

(a) Solve the following LPP: Maximize $Z = 3x_1 + 5x_2$ subject to the constraints

 $x_1 - 2x_2 \le 6,$ $x_1 \le 10,$ $x_2 \ge 1$

and $x_1, x_2 \ge 0$.

(b) Prove that the objective function of a linear programming problem assumes its optimal [5] value at an extreme point of the convex set of feasible solution.
 (c) Let x₁ = 2, x₂ = 3, x₃ = 1 be a feasible solution of the LPP [5]

Maximize	$Z = x_1 + 2x_2 + 4x_3$
subject to	$2x_1 + x_2 + 4x_3 = 11,$
	$3x_1 + x_2 + 5x_3 = 14$

(d) and $x_1, x_2, x_3 \ge 0$. Find a basic feasible solution. (d) Use the dual simplex method to solve the LPP given below: [5] Maximize $Z = -3x_1 - 2x_2$ subject to $x_1 + x_2 \le 7$, $x_1 + 2x_2 \ge 10$

and $x_1, x_2 \ge 0$.

- (e) In an assignment problem, if a constant is added or subtracted to every element of any [5] row (or column) of the cost matrix $[c_{ij}]$, then prove that an assignment that minimizes the total cost on one matrix also minimizes the total cost on the other matrix.
- (f) Determine the initial basic feasible solution of the following transportation problem by [5] Vogel's approximation method.

	D_1	D_2	D_3	a_{i}
O_1	4	8	8	66
O_2	16	24	16	72
O_3	8	16	24	77
b_{j}	72	102	41	•

Full Marks: 60

 $6 \times 5 = 30$

[5]

Page 1 of 4

		То			
		Α	В	С	D
	Α	∞	7	6	8
F	В	7	∞	8	5
FIOIII	С	6	8	∞	9
	D	8	5	9	∞

(h) Using dominance property reduce the following payoff matrix to 2×2 matrix and hence [5] solve the problem:

		Player B			
		B_1	B_2	B_{β}	B_4
	A_1	1	2	-2	2
Dlovor A	A_2	3	1	2	3
Player A	A_3	-1	3	2	1
	A_4	-2	2	0	-3

2.	Answei	r any three questions: $3 \times 10 = 30$	
(a)	(i)	If for a basic feasible solution X_B of a linear programming problem: Maximize $Z = CX$ subject to $AX = b, X \ge 0$, $Z_j - C_j \ge 0$ for every column a_j of A , then prove that X_B is an optimal solution.	[6]
	(ii)	Find the basic solutions of the system of equations, $2x_1 + x_2 + 4x_3 = 11$, $3x_1 + x_2 + 5$	[4]
(b)		$5x_3 = 14$. Solve the following LPP by two phase method: Maximize $Z = 2x_1 - 3x_2$	[10]
		subject to $-x_1 + x_2 \ge -2,$ $5x_1 + 4x_2 \le 46$ $7x_1 + 2x_2 \ge 32$ and $x_1, x_2 \ge 0.$	
(c)	(i)	If the <i>i</i> -th constraint of the primal problem is an equation then show that the <i>i</i> -th variable of the corresponding dual problem is unrestricted in sign.	[4]
	(ii)	Using duality, solve the following LPP Minimize $Z = 10x_1 + 6x_2 + 2x_3$ subject to $-x_1 + x_2 + x_3 \ge 1$, $3x_1 + x_2 - x_3 \ge 2$ and $x_1, x_2, x_3 \ge 0$.	[6]
(d)	(i)	Prove that the number of basic variables in a transportation problem with m origins and n destinations is at most $m+n-1$.	[5]

(ii) Solve the following assignment problem:

10	24	30	15
16	22		
10	22	28	12
12	20	32	10
9	26	34	16
	12 9	12 20 9 26	12 20 32 9 26 34

(e) (i) Solve the following game:

00	Player B				
		B_1	B_2	B_3	B_4
	A_1	19	6	7	5
Player A	A_2	7	3	14	6
5	A_3	12	8	18	4
	A_4	8	7	13	-1

State and prove fundamental theorem of rectangular games. (ii)

B.A/B.Sc 5th Semester (Honours) Examination, 2020 (CBCS) **Subject: Mathematics Course: BMH5DSE12 (Number Theory)**

Time:3 Hours The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning] $6 \times 5 = 30$ Answer any six questions: 1. Show that 4(29)! + 5 is divisible by 31. [5] (a) Prove that no prime factor of $n^2 + 1$ can be of the form 4m - 1 where m is an integer. (b) [5] Prove that $\varphi(3n) = 3\varphi(n)$ if and only if 3 is a divisor of n, where φ is the Euler's phi (c) [5] function. (d) If p is a prime number then show that [5] $(p-1)! \equiv p - 1 (mod(1+2+3+\dots+(p-1))).$ If $gcd(a,n) = gcd(b,n) = gcd(ord_n^a, ord_n^b) = 1$ then show that $ord_n^{ab} = ord_n^a \cdot ord_n^b$. [5] (e) Solve $25x \equiv 15 \pmod{29}$. [5] (f) Find the least positive residue in 2^{41} modulo 23. [5] (g) Find the general solution in integer of the equation 7x + 11y = 1. (h) [5] $10 \times 3 = 30$ 2. Answer any three questions:

How many primitive roots are there in modulo 12^{100} ? (a) (i) [5]

(ii) Find the order of 12 modulo 25.

[5]

[5]

[5]

[5]

Full Marks: 60

(b)	(i)	If p and $p^2 + 8$ are both primes, prove that $p = 3$.	[5]
	(ii)	Prove that the total number of positive divisors of a positive integer n is odd if and only	if [5]
		<i>n</i> is a perfect square.	
(c)	(i)	Let the integer a have order k modulo n . Show that	[3]
		$a^h \equiv 1 (modn)$ if and only if k/h .	
	(ii)	Prove that the functions τ and σ are both multiplicative.	[7]
(d)	(i)	Find four consecutive integers divisible by 3,4,5,7 respectively.	[7]
	(ii)	If $gcd(a,m) = 1$, then prove that the linear congruence $ax \equiv b(modm)$ has a unique solution.	ie [3]
(e)	(i)	Prove that n is divisible by 19 if $a + 2b$ is divisible by 19 where $n = 10a + b$.	[5]
	(ii)	Find the reminder when $1^5 + 2^5 + \dots + 100^5$ is divided by 5.	[5]
		B.A/B.Sc 5 th Semester (Honours) Examination, 2020 (CBCS)	
		Subject: Mathematics	
		Course: BMH5DSE13 (Point Set Topology)	
Time	e: 3 Ho	Full Marks: 60	
	Can	The figures in the margin indicate full marks. didates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]	
1.	Answe	er any six questions: $6 \times 5 = 30$	
1 . (a)	Answe	For any six questions: If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. $6 \times 5 = 30$	[5]
1. (a) (b)	Answe	For any six questions: $6 \times 5 = 30$ If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction.	[5] [1+4]
 (a) (b) (c) 	Answe	For any six questions: $6 \times 5 = 30$ If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it.	[5] [1+4] [1+4]
 (a) (b) (c) (d) 	Answe	For any six questions: $6 \times 5 = 30$ If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no	[5] [1+4] [1+4] [5]
 (a) (b) (c) (d) 	Answe	For any six questions: $6 \times 5 = 30$ If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete	[5] [1+4] [1+4] [5]
 (a) (b) (c) (d) 	Answe	For any six questions: $6 \times 5 = 30$ If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space.	[5] [1+4] [1+4] [5]
 (a) (b) (c) (d) (e) 	Answe	If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact.	[5] [1+4] [1+4] [5]
 (a) (b) (c) (d) (e) (f) 	Answe	If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact. Prove that every totally bounded metric space is bounded. Is the converse true? Justify	[5] [1+4] [1+4] [5] [5]
 (a) (b) (c) (d) (e) (f) 	Answe	For any six questions: If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact. Prove that every totally bounded metric space is bounded. Is the converse true? Justify your answer.	[5] [1+4] [1+4] [5] [5]
 (a) (b) (c) (d) (e) (f) (g) 	Answe	For any six questions: If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact. Prove that every totally bounded metric space is bounded. Is the converse true? Justify your answer. Prove that a topological space (X, τ) is locally connected if and only if each	[5] [1+4] [1+4] [5] [2+3] [5]
 (a) (b) (c) (d) (e) (f) (g) 	Answe	For any six questions: If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact. Prove that every totally bounded metric space is bounded. Is the converse true? Justify your answer. Prove that a topological space (X, τ) is locally connected if and only if each component of an open subspace is open in (X, τ) .	[5] [1+4] [1+4] [5] [2+3] [5]
 (a) (b) (c) (d) (e) (f) (g) (h) 	Answe	If u, v, w are cardinal numbers, prove that $(u^v)^w = u^{vw}$. Define an ordinal number. State and prove the principle of transfinite induction. Define Kuratowski closure operator and explain the topology derived from it. Let (X, τ) be a topological space. Prove that X is connected if and only if there is no continuous surjective map $f: X \to \{0,1\}$, where $\{0,1\}$ is the two point discrete space. Define a locally compact space and prove that every closed subspace of a locally compact space is locally compact. Prove that every totally bounded metric space is bounded. Is the converse true? Justify your answer. Prove that a topological space (X, τ) is locally connected if and only if each component of an open subspace is open in (X, τ) . Prove that the union of an arbitrary family of connected sets, no two of which are separated, is a connected set.	[5] [1+4] [1+4] [5] [2+3] [5] [5]

2.	Answe	r any three questions: $3 \times 10 = 30$	
(a)	(i)	Let <i>u</i> be the cardinal number of the set <i>U</i> . Prove that the cardinal number of the power set $P(U)$ of <i>U</i> is 2^{u} .	[4]
	(ii)	Prove that every non-degenerate interval open, closed or semi open and semi closed has the same cardinality as that of \mathbb{P}	[3]
	(iii)	Let (A, \leq) be a totally ordered set. Define an initial segment A_x of A . If $x \leq y$ in A ,	[3]
		prove that $A_x \subset A_y$.	
(b)	(i)	Give an example to show that there exists continuous mapping of a topological space into a topological space which is neither open nor closed.	[5]
	(ii)	If $A \subset X$, X a topological space, show that $(\overline{X-A}) = X - A^\circ$ and	[3+2]
		$(X - A)^{\circ} = X - \overline{A}$, where the symbols have their usual meanings.	
(c)	(i)	Let X be a topological space such that all real valued continuous function on X satisfy intermediate value property. Prove that X is connected.	[3]
	(ii)	Construct a real valued function on a connected space which satisfies intermediate value property but not continuous.	[3]
	(iii)	Give an example of a connected space which is not locally connected.	[4]
(d)	(i)	Prove that the image of a locally connected space under a mapping f which is both open and continuous is locally connected.	[5]
	(ii)	Show that every closed bounded interval in the real number space (\mathbb{R}, τ) with usual	[5]
(e)	(i)	topology is compact. Prove that a real valued continuous function defined on a compact topological space is	[5]
	<i>(</i>)	bounded and attains its least and greatest values.	
	(11)	Prove that a metric space (X, d) is compact if and only if every family of closed sets	[5]

with the finite intersection property has nonempty intersection.